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ABSTRACT: In this research, a pavement is modeled as a multi-layered elastic system composed 
of a subgrade, which is assumed to be a semi-infinite medium on top which there are layers of 
finite thickness extended infinitely in a horizontal direction. A horizontal uniformly distributed 
load is assumed to act on the pavement surface. Expressing the displacement function of Navier’s 
equation in cylindrical coordinate system using harmonic and bi-harmonic functions, the analytical 
solution method is obtained through Hankel transformation and Hankel inverse transformation. In 
this research a computer program called Analysis of Multi-layered Elastic Systems (AMES), 
which can find pavement response due to multiple shear loadings, was developed. The accuracy of 
this program is confirmed by comparing results for a number of worked examples with results 
obtained using BISAR program. The comparison shows that the stress outputs from BISAR yield 
erroneous results at the pavement surface. 
 
Keywords: Multi-layered elastic systems, Navier's equation, harmonic function, bi-harmonic 
function, Hankel transformation, AMES 
 
 
1. INTRODUCTION 
 
The Boussinesq solution, in case of concentrated vertical load acting on the surface of a semi-
infinite body and also the Cerrutti solution in case of the action by concentrated horizontal load 
are well known. By integrating solutions of the concentrated load in the range of a circle, 
solutions for the case of circular uniformly distributed load can be obtained. However, it has not 
been possible to expand these solutions to a multi-layered structure. There are already numerous 
researches on the analytical solution based on the elastic theory. Most of these researches were 
performed before the invention of computers or when computer performance was still low and as 
a result most of the solutions were presented in the form of tables or graphs. Moreover, solutions 
presented were mostly based on a semi-infinite half space while the most famous solutions for a 
multilayer system were the Burmister’s solution for the case of axi-symmetric load and Kimura’s 
solution (1) that was intended for a two-layer system under a horizontal load. Most of these 
researches are well discussed by Poulos & Davis (2) and Kimura (3). Miyamoto (4) explains in 
details the analytical solution for horizontal circular load acting on a semi-infinite medium. 

BISTRO computer program may be the first program for analysis of a multilayer elastic 
system to be developed specifically for computer application. This program was developed in 
1967 by the SHELL research group and was capable of performing axi-symmetric elastic analysis 
of a multilayered structure. One of the shortcomings of BISTRO was its inability to consider 
interface slip condition. Furthermore, since this program was intended for axi-symmetric analysis, 
it was not capable of performing asymmetric analysis of the multilayered structure. Due to these 
shortcomings, further modification was done on BISTRO and in 1973 BISAR program was 
developed. This program is capable of computing the solution (displacement, stress, strain, etc) 
for a given point in a multilayered elastic structure and is well trusted and highly evaluated among 
pavement engineers. 

Through development of AAMES (Axi-symmetric Analysis of Multi-layered Elastic 
Systems) (5), where effects of uniformly distributed vertical load were investigated, authors of 
this paper were able to check the accuracy and performance of BISAR program. Moreover, due 
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to limitations on the use of BISAR program together with a number of accuracy problems for the 
case of horizontal loading, it is hard to assert that enough check has been done on this program. 

The objective of this research was, therefore, to develop a computer program for analyzing 
the effect of horizontal load acting on the surface of a multilayered elastic system. By expressing 
Navier’s displacement equations in cylindrical coordinate system, Michell and Boussinesq 
displacement functions can be converted to harmonic and bi-harmonic functions. Theoretical 
solutions would be obtained by the application of Hankel transformation and Hankel inverse 
transformation. This procedure is fundamentally similar to BISAR program. However, the 
difference between this method and BISAR is the use of Hankel transformation. In BISAR 
program only Bessel functions of the first kind of zero and first orders were used while in this 
research Bessel functions of the first kind of zero, first and second orders are used. Furthermore, 
a propagation matrix was developed in the Hankel transformation range. By applying boundary 
and interface conditions in this range and determining constants of integration, Hankel inverse 
transformation could be performed. This solution, which was also used in the development of 
AAMES, is relatively simple. 

Evaluation of multiple loading cases is facilitated by placing measurement points as well as 
applied loads inside a global coordinate system. A local coordinate axis is introduced at the center 
of each loading point and subsequently, solutions for every measurement points are obtained. 
Since elastic theory is used, principle of superposition is also applied. Solutions for each case are 
then translated into the global coordinate system where overall superposition of the solutions is 
performed. Accuracy of this program is evaluated by comparing its results with the results 
obtained using BISAR. By way of this comparison, problems related to BISAR solutions when a 
horizontal load acts on the surface of a pavement structure are highlighted. 

The program developed in this research is called AMES (Analysis of Multi-layered Elastic 
Systems). At present, this program is set to consider a maximum of 100 loads, 100 layers and 
10,000 measurement points. 
 
 
2. PROBLEM DEVELOPMENT 
 
Pavement structure considered in this research is as shown in Figure 1(a). The subgrade is 
assumed to be a semi-infinite elastic medium on top of which there are horizontal layers of finite 
thickness extended infinitely in the horizontal direction. Each layer is made up of elastic, isotropic 
and homogeneous materials and the boundary condition is assumed to be rough. The circular load 
is assumed to act horizontally at the surface of the pavement as shown in Figure 1(b). Coordinate 
system used (X, Y, Z) is a global coordinate system, while coordinate system (x, y, z) is a local 
coordinate system. The origin of local coordinate system is at the center of the loading point and 
the direction of the x-axis is similar to the direction of the load. Furthermore, by introducing a 
cylindrical coordinate axis with common z-axis, the equilibrium equation can be expressed using 
Navier’s equations as follows: 
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where, ν  is Poisson’s ratio and wvu ,,  are displacement components in z?r ,,  directions of the 
cylindrical coordinate system. 

Since a horizontal uniformly distributed circular load acts on the pavement surface, the 
surface boundary conditions for ar ≤  may be given as: 
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where, zzrz σττ θ ,,  are components of stress and q is a distributed load. Furthermore, for the case 
of ar > , the surface boundary conditions may be given as: 

0=σ=τ=τ θ zzrz          (2b) 

 
3. Method of Analysis 
3.1. Hankel transformation of displacement and stress components 
Michell function, Φ , and Boussinesq function, Ψ , can be used to represent displacement 
components in Equations (1a, b, c) as: 
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(a) Multilayer structural model                           (b) Surface loading model 

 
                                           Figure 1. Analytical model 
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where 2∇  is a Laplace operator in a cylindrical coordinate system: 
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UsingΦ  and Ψ , stress components in a cylindrical coordinate system may be represented as: 
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where µ  is a shear modulus. Substituting Equations (3a, b) into Equations (1a, b, c) and 
rearrange yields: 

04 =Φ∇           (4a) 

02 =Ψ∇           (4b) 

From the above relation, it is clear that a unique solution can be obtained if Φ  and Ψ  satisfy 
the equilibrium and compatibility equations.  

Fourier transformation of Φ  and Ψ  with respect to θ  gives: 
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As shown in Figure (1b), since a uniformly distributed load is considered and by making 
reference to Equation (2a), only 1=m  may be used. This implies, letter m in the right hand side 
of Equations (5a, b) may be replaced by 1 to become: θφ cos),( zr  and θψ sin),( zr , respectively. 
Hankel transformation of ),( zrφ , ),( zrψ  would give: 
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Substituting Equations (5a, b) and (6a, b) into Equations (4a, b), yields: 
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And, solutions to these equations would be: 
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zz FeEezH ξ−ξ +=ξ ),(         (8b) 

By substituting Equations (5a, b) and Equations (8a, 8b) into Equations (3a, b, and c) and 
performing Hankel transformation the following relation is obtained: 
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where, [ ]1P  is 66×  matrix whose components are shown in Table 1. Coefficients FEDCBA ,,,,,  
are constants of integration determined by the use of boundary and interface conditions. Values of 
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Table 1. [ ]1P  matrix 
zeξξ2  ( ) zez ξξ+ξ1  ze ξ−ξ− 2  ( ) zez ξ−ξ−ξ1  zeξξ2  ze ξ−ξ2  

zeξξ− 2  ( ) zez ξξ+ξ− 1  ze ξ−ξ2  ( ) zez ξ−ξ−ξ− 1  zeξξ2  ze ξ−ξ2  

zeξξ 2−  zez ξν+ξ+−ξ− )42(  ze ξξ −2  zez ξ−ν−ξ+ξ− )42(  0  0  

zeξµξ− 32
 

zez ξν+ξ+−µξ− )21(2  ze ξ−µξ32  zez ξ−ν−ξ+µξ )21(22  0  0  

zeξµξ32  zez ξν+ξµξ )2(22  ze ξ−µξ32  zez ξ−ν−ξµξ )2(22  zeξµξ22  
ze ξµξ −− 22

 
zeξµξ32  zez ξν+ξµξ )2(22  ze ξ−µξ32  zez ξ−ν−ξµξ )2(22  zeξµξ− 22  ze ξ−µξ22  

 
 

Table 2. [ ]2P  matrix 
zeξµξ 32  zez ξνξµξ )21(22 ++  ze ξ−µξ− 32  zez ξ−ν+ξ−µξ )21(22  0  0  

zeξµξ32  zez ξνξµξ )41(22 ++  ze ξ−µξ− 32  zez ξ−ν+ξ−µξ )41(22  0  0  

0  0  0  0  zeξµξ22  ze ξ−µξ22  

 
θθ τσσ rr ,,  given by Equation (10) would be computed after FEDCBA ,,,,,  have been 

determined: 
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where, [ ]2P  is 63×  matrix whose components are shown in Table 2. 
Hankel inverse transformation in a cylindrical coordinate system could be performed on the 

Hankel transform of displacement and stress components to give: 
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where the top bar represents Hankel transformation of the corresponding displacement and stress 
components. 
 
3.2. Expansion to multilayered pavement structure 
Figure 1(a) was considered in this analysis. With reference to Equation (9), displacement and 
stress components for the thi  layer would be given as follows: 
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For the case where displacement and stress components at the boundary between thi  and 
th)1( +i  layers are assumed to be continuous and local coordinate systems, whose origins are at 

the surface of each layer, are introduced the following relations would be obtained: 
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By using Equations (12) and (13) it is possible to develop propagation matrix showing the 
relationship between stress and strain components of the st1  layer and constants of integration of 
the lowest layer (the thN  layer). Furthermore, when the value of z  approaches infinity in case of 
the thN  layer (semi-infinite medium), stress and strain components approach zero and constants 
of integration will become: 0=== nnn EBA . 

Hankel transformation of the uniformly distributed circular load, q , whose radius is a  and 
acts on the surface of the pavement would be given as: 
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where, 

( ) )(2)(2)( 10 0 aJqadrrJqrq
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By taking into consideration boundary and interface conditions and representing propagation 
matrix components by ijt , the relationship between the st1  and thN  layers would be: 
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and constants of integration for the thN  layer would be determined by: 
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By using Equation (17), together with Equations (12) and (13), constants of integration 
( )(ξiA , )(ξiB , )(ξiC , )(ξiD , )(ξiE , and )(ξiF ) for all the layers could be computed in a 
stepwise process. This means values on the right hand side of Equations (9) and (10) would be 
obtained, and by applying Hankel inverse transformation it is possible to compute values on the 
left hand side of Equations (11a) - (11i) to obtain strain and stress components. 

However, when 0=r , computation of rσ  and θτr  using Equations (11g) and (11i) is not 
straightforward because of the term r1 . The L’Hopital rule is used to solve these equations. The 
accuracy of computation of Equations (11a) - (11i) is highly influenced by the accuracy of the 
semi-infinite integration. In this study, a relatively accurate double exponential (DE) integration 
method (6, 7) was used, as in the AAMES program, to solve semi-infinite integration. 
 
 
4. ANALYSIS FOR MULTIPLE LOADINGS 
 
Figure 2 shows the loading point and measurement point as represented in a global coordinate 
system ),,( ZYX . For multiple loadings acting on the pavement surface, the transformation 
matrix []S  from cylindrical to global coordinate system is represented by: 

[ ]
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
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






θ+αθ+α−
θ+αθ+α
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100
0)cos()sin(
0)sin()cos(

S        (18) 

By using this transformation matrix, displacement components in global coordinate system 
would be represented as: 

 

x

y
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a2

θ

r

X

Z

measurement point

(0,0,0)

Y
)0,)sin(,)cos(( αθαθ ++++ rYrX

loading point (X, Y, 0)

z  
 

Figure 2. Global and local coordinate axes 
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Figure 3. Load and layer properties in example 1 
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Figure 4. Comparison of AMES and BISAR results (example 1) 
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whereas, stress components in local coordinate system would be represented as: 
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Displacement and stress components for all individual loading will be obtained in this manner. 
Finally, by using the principal of superposition, the overall displacement and stress components in 
the global coordinate system due to all the loadings will be obtained by superimposing results 
from the individual loadings. 
 
 
5. NUMERICAL COMPUTATIONS 
5.1. Example 1 
AMES and BISAR programs were used to obtain pavement response due to horizontal load 
acting on the surface of a three-layer pavement structure as shown on Figure 3. Figure 4 shows 
pavement response at the point of loading ( cm0=r ), when the depth z  was varied between 0 
and 60cm. 

Figures 4(a) and 4(b) indicate a good agreement between results of pavement displacements 
obtained using AMES and BISAR programs. Results for shearing stress are presented in Figures 
4(c) and 4(d). Results for shearing stress, zθτ , are shown in Figure 4(c). The difference between 
the two programs is more evident near the surface as the difference between the results start 
increasing and at the surface where there is a sudden change of value for the case of BISAR result. 
This sudden change of shear stress value at the surface of the pavement is not natural and appears 
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Figure 5. Load and layer properties in example 2 
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to lack the support of basic engineering judgment. Results for shear stress, rzτ , show similar trend 
although there is no sudden change of BISAR result at the surface. This difference can mainly be 
attributed to the difference in the level of accuracy in the respective programs when solving semi-
infinite Hankel transformations presented in Equation (9). 
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Figure 6. Comparison of AMES and BISAR results (example 2) 
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5.2. Example 2 
AMES and BISAR programs were again used to obtain pavement response due to two horizontal 
loads acting on the surface of a three-layer pavement structure as shown on Figure 5. Figure 5 
shows the loading condition in the global coordinate system.  

Figures 6(a-e) show variations of displacement and stress components on a 0 to 60cm depth 
along the z-axis. Displacement results shown in Figures 6(a) and 6(b) indicate a good agreement 
between the two programs. However, similar to example 1 above, stress results presented in 
Figures 6(c, d, e) indicate differences between these two programs especially for measurement 
points at and near the surface. The difference between these two programs starts increasing near 
the surface and there is a sudden jump for the case of BISAR results at the surface of the 
pavement structure. 
 
6. CONCLUSIONS 
 
In this study, development of analytical solutions for pavement response due to uniformly 
distributed horizontal circular force acting on the surface of a multilayer pavement structure were 
presented. Accuracy of the program developed was evaluated by comparison of its results with 
BISAR results. The following conclusions were drawn from the results obtained: 
• The accuracy of the theoretical solution developed in this study was confirmed by comparison 

of AMES results with BISAR results 
• Figure 4(c) in example 1 and Figures 6(c, d, e) in example 2 show a discontinuous pattern of 

shearing stress obtained using BISAR. This is an indication of computational errors at or near 
the multilayer structure for the part of BISAR. 

• Examples 1 and 2 confirm that AMES program can be used to analyze multilayer structural 
response due to a single or multiple horizontal loadings with relatively good accuracy. 
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